Uncertainty and inequality: a relationship between entropy and income distribution in society
Abstract
The paper is aimed to discussing features of a relationship between income inequality and entropy.The analyses is based on the theoretical thesis that income inequality is a factor of uncertainty and instability in society, chaotic behaviour of social-economic system, and it is accompanied with entropy increase. Theil index and Gini coefficient are used as income inequality measures in the analyses,Shannonentropy is chosen as entropy measure.The relationship between income inequality measures and entropy measures, including entropy based on income distribution and entropy based on people distribution are discussed. It is noted that changes of entropy and Gini coefficient can have unlike signs: entropy can increase with both inequality increase and inequality decrease. Entropy maximum takes place for Lorenz curve with Gini coefficient 1/3, a deviation from it leads to entropy decrease. This is illustrated by power-series distribution.The analyses give arguments to conclude the following. If majority of population is located in low-income clusters, inequality increasing can lead to decreasing of uncertainty and rising of controllability of social-economic system. If a government starts an implementing a politic aimed to inequality decreasing, in the beginning it will meet uncertainty and chaos rising. It can be suggested that nonlinear change of entropy accompanying changes in income distribution is a factor which slows dawn a further progress in this direction and blocks economic reforms in developing countries.Key words: entropy, income distribution, Theil index, Gini coefficientReferences
Осипов, А.И., Уваров, А.В. 2004. Энтропия и ее роль в науке. Соросовский Образовательный Журнал, Т.8, №1, с. 70-79.
Шамбадаль, П. 1967. Развитие и приложения понятия энтропии. М.: Наука, 283 с.
Крамаренко, С.С. 2005. Метод использования энтропийно-информационного анализа для количественных признаков. Известия Самарского научного центра Российской академии наук. Т.7, №1, с. 242-247.
Вильсон, А.Дж. 1978. Энтропийные методы моделирования сложных систем. Пер. с англ. М.: Наука, 248 с.
Климонтович, Ю.Л. 2002. Введение в физику открытых систем.
М.: Янус-К, 284 с.
Пигнастый, О.М. 2007. Статистическая теория производственных систем. Харьков, ХНУ им. Каразина, 388 с.
Королев, О.Л., Куссый, М.Ю., Сигал, А.Ю. 2013. Применение энтропии при моделировании процессов принятия решений в экономике. Монография. Симферополь, Издательство «ОДЖАКЪ», 148 с.
Сергеев, Н. 2002. Ранжирование стратификационных критериев методом энтропийного анализа. Мир России, № 3, с.171-184.
Шкаратан, О.И., Ястребов, Г.А. 2009. Энтропийный анализ как метод безгипотезного поиска реальных (гомогенных) социальных групп [Текст]: научное издание. СОЦИС., № 2, с. 52-64.
Аптекарь, М.Д., Рамазанов, С.К., Припотень, В.Ю., Руденко, М.А. 2005. Информационно-энтропийный подход в анализе эколого-экономических систем. Вісник СНУ ім. В.Даля, № 5 (87), c.265-272.
Романовский, М.Ю., Романовский, Ю.М. 2007. Введение в эконофизику. Статистические и динамические модели. М.-Ижевск: РХД, 280 с.
Дербенцев, В.Д., Сердюк, О.А., Соловйов, В.М., Шарапов, О.Д. 2010. Синергетичні та еконофізичні методи дослідження динамічних та структурних характеристик економічних систем. Монографія. Черкаси: Брама-Україна, 287 с.
Соловйов, В.М., Сердюк, О.А. 2013. Використання ентропії Тсалліса для оцінки складності економічних систем. Інформаційні технології та моделювання в економіці: на шляху до міждисциплінарності: Монографія За ред. д.ф.-м.н., проф. Соловйова В.М. Черкаси: Брама-Україна, видавець Вовчок О.Ю.
Kuznets, S. 1955. Economic Growth and Income Inequality. American Economic Review, Vol. 45, No 1, рp. 1-28.
Milanovic, B. 1994.Determinants of Cross-Country Income Inequality: An Augmented Kuznets Hypothesis. World Bank Policy Research Working Paper 1246, World Bank, Washington, D.C.
Ravallion, M., Lyn, S., Michael, B. 1996. Equity and Growth in Developing Countries: Old and New Perspectives on the Policy Issues. Policy Research Working Paper 1563, World Bank, Washington, D.C., January
Deininger, K., Lyn, S. 1996. A New Data Set Measuring Income Inequality. World Bank Economic Review, September. № 10 (3), рр. 565–591.
Adams, Richard H. 2002. Economic Growth, Inequality, and Poverty – Findings from a New Data Set // World Bank Policy Research Working Paper. February № 2972. Режим доступа: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=636334. – Загл. с экрана.
Bigsten, A., Levin, J. 2001. Growth, Income Distribution, and Poverty: A Review. WIDER Discussion Paper 129, World Institute for Development Economics research (WIDER), Helsinki, November.
Shannon, C. E. 1948. A Mathematical Theory of Communication. C. E. Shannon. Bell System Technical Journal, V. 27, No. 3, No. 4.
Theil, H. 1967. Economics and information theory. Amsterdam: North-Holland, 488 p.
Cowell, F., 1977. Measuring Inequality. Philip Allan, Oxford, UK.
Copyright (c) 2014 Tamara Merkulova, Artem Yantsevich
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved for authors with articles of printed version of ISJ "Economic Cybernetics" (ISSN 2077-8031).
Copyrights of published works are retained by the author(s) but with first publication rights granted to Donetsk National University. Further, in case of any plagiarism issue author(s) hold(s) complete liability.
Online version of ISJ "Economic Cybernetics" (ISSN 2312-5837) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Permissions beyond the scope of this license may be available at http://ec.projects-manager.com.